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We report a search for diphoton events with large missing transverse energy produced in pp collisions at
/s = 1.96 TeV. The data were collected with the DO detector at the Fermilab Tevatron Collider, and correspond
to 6.3 fb~! of integrated luminosity. The observed missing transverse energy distribution is well described
by the standard model prediction, and 95% C.L. limits are derived on two realizations of theories beyond the
standard model. In a gauge mediated supersymmetry breaking scenario, the breaking scale A is excluded for
A <124 TeV. In a universal extra dimension model including gravitational decays, the compactification radius

Re is excluded for R ! < 477 GeV.

PACS numbers: 14.80.Ly, 14.80.Rt, 13.85.Rm

In the standard model (SM), events with two high trans-
verse momentum photons (yy) and large missing transverse
energy (F7) are produced at a small rate in pp collisions.
This final state is therefore sensitive to contributions from pro-
cesses beyond the SM (BSM). We report a search for yy events
with large £r produced in pp collisions recorded using the DO
detector at the Fermilab Tevatron Collider. The sensitivity is
assessed for two benchmark BSM models, gauge mediated
supersymmetry (SUSY) breaking (GMSB) [1] and universal
extra dimensions (UED) [2].

In GMSB models, the masses of the SUSY partners to SM
particles arise from SM gauge interactions and are propor-
tional to the effective SUSY breaking scale A. As the grav-

*with visitors from “Augustana College, Sioux Falls, SD, USA, bThe
University of Liverpool, Liverpool, UK, “SLAC, Menlo Park, CA, USA,
d]CREA/IFAE, Barcelona, Spain, “Centro de Investigacion en Computacion
- IPN, Mexico City, Mexico, JECEM, Universidad Autonoma de Sinaloa,
Culiacan, Mexico, and 8 Universitit Bern, Bern, Switzerland.

itino (G) does not participate in SM gauge interactions, it has
a small mass [3] and is the lightest SUSY particle. Assuming
R parity conservation [4]], the SUSY process with the largest
cross section at the Tevatron would be chargino and neutralino
pair production (x7x3, xix7) [5], followed by decay chains
to the next-to-lightest SUSY particle (NLSP). We consider the
case when the lightest neutralino (X(l)) is the NLSP [6], and de-
cays promptly with the dominant branching fraction yielding
a photon and an essentially massless gravitino (x(l) — Gy [1.
The two gravitinos escape detection, resulting in the final state
YY+ Er +X, where X denotes leptons and jets produced in the
decay chains [8].

In UED models, extra spatial dimensions are predicted that
are accessible to all SM fields. We consider the case of a single
UED that is compactified with radius R, resulting in a tower
of states for each SM field, called Kaluza-Klein (KK) exci-
tations, with the masses of these states separated by R '. At
the Tevatron, the UED process with the largest cross section
would be the production of pairs of first level KK quarks [9],
followed by decay chains to the lightest KK particle (LKP),



the KK photon (y*). If additional larger extra dimensions also
exist that are only accessible to gravity, the LKP is able to
decay promptly through gravitational interactions to a photon
and a graviton (Y* — GY) [10,[11]. The two gravitons escape
detection, resulting in the final state yy+ £7 + X.

Searches for BSM physics in yy+ F7 + X events have been
performed at the CERN e"e™ Collider (LEP) [12], and at
the Tevatron in Run I [13]] and Run II [14-17)]. This anal-
ysis uses similar methods to those adopted in Ref. [17], a
six times larger dataset, and improved photon identification
criteria utilizing a neural network (NN) discriminant recently
employed in other analyses [18]]. The larger dataset has sub-
stantially increased the search sensitivity, and has allowed
an improved formulation of the data-derived SM background
prediction. The background prediction, including the assess-
ment of systematic uncertainties, was developed using only
the Fr < 50 GeV region of the yy sample. Once finalized,
the events with £7 > 50 GeV were included in evaluating the
consistency with the SM prediction and the sensitivity to the
signal models. In addition to substantially improved limits on
the GMSB model, this Letter also presents the first limits on
the UED model with gravitational decays.

The DO detector [[19] consists of an inner tracker, a liquid-
argon/uranium calorimeter, and a muon spectrometer. The
tracking system is comprised of a silicon microstrip tracker
(SMT) and a central fiber tracker (CFT), both located within a
2 T superconducting solenoidal magnet. A central calorime-
ter (CC) covers pseudorapidities [n| < 1.1, and two endcap
calorimeters (EC) extend the coverage to |n| < 4.2, where
1N = —Inftan(6/2)], and 6 is the polar angle with respect to the
proton beam direction. The electromagnetic (EM) section of
the calorimeter is segmented in four longitudinal layers (EM3,
i = 1,4) with transverse segmentation A1 X A¢p = 0.1 x 0.1 (¢
is the azimuthal angle), except in EM3 where it is 0.05 x 0.05.
A central preshower detector (CPS) utilizing several layers of
scintillating strips, positioned between the solenoid coil and
CC, provides a precise measurement of EM shower position.
The trajectory of photon candidates is reconstructed by com-
bining the four EM-layer and CPS measurements [[17].

The data analyzed were collected with single EM trig-
gers and correspond to an integrated luminosity of 6.3 &
0.4 fb~! [20]. Events containing identified calorimeter noise
patterns which could bias the 7 distribution are removed.
Diphoton candidate events are selected by requiring at least
two photon candidates with transverse energy Er > 25 GeV
identified in the CC. Photon candidates are selected from
EM clusters reconstructed within a cone of radius R =
V/(AN)2 + (Ad)? = 0.2 by requiring (i) > 95% of the clus-
ter energy be deposited in the EM layers, (ii) the calorime-
ter isolation variable I = [E;;(0.4) — Egp(0.2)] /EEm(0.2) be
less than 0.10, where E;;(R) (Egp(R)) is the total (EM) en-
ergy in a cone of radius & , (iii) the shower width in EM3
be consistent with an EM shower, (iv) the scalar sum of the
transverse momentum (pr) of tracks originating from the pp
collision vertex (PV) in a 0.05 < R < 0.4 annulus about the
cluster centroid be less than 2 GeV, and (v) the cluster not

be spatially matched to a reconstructed track or a significant
density of SMT and CFT hits [17]. Further rejection of jets
misidentified as photons is achieved with a requirement on
the NN discriminant, trained using a set of track, CPS, and
calorimeter based variables [[18]].

Electrons satisfy the same requirements as photons, with
the exception of the track veto (item v). Jets are recon-
structed with the iterative midpoint algorithm [21]] with cone
size R = 0.5. The Er is determined using calorimeter energy
depositions with |n| < 4. Corrections are applied to £7 to cal-
ibrate energy from EM objects and jets, and to account for the
pr of muons. There are on average several pp interactions per
crossing of the beams. The correct PV is identified in ~ 98%
of signal events for the benchmark models. The photon tra-
jectories must indicate that the candidates originate at the PV.
This requirement is to ensure an accurate calculation of trans-
verse energy in background events in which the correct PV
is less efficiently identified, to suppress non-collision events,
and measured to be =~ 86% efficient using a Z(— ee,uu) + 7y
data sample. To reduce the number of events with signifi-
cantly mismeasured £7, events are rejected if the difference
in azimuthal angle (A¢) between the highest E7 jet (if present)
and Fr is greater than 2.5 radians, or if Ad between either pho-
ton and F7is less than 0.2 radians. A total of 7934 yy candi-
date events satisfy these criteria.

SM background events in the yy sample are categorized as
arising from instrumental Fr sources (SM vy, y+jet, multi-
jet) and genuine 7 sources (Wy, W +jet, W/Z +vyy). All
backgrounds are measured using data control samples, with
the exception of small contributions from W /Z + yy events,
which are estimated using Monte Carlo (MC) simulation.

Instrumental £7 is a result of energy mismeasurement in an
otherwise E7 balanced event. Instrumental £ sources in the
Yy sample are separated into contributions from SM Yy events,
and events with at least one photon candidate originating from
a misidentified jet (misID-jet), i.e., y+jet and multi-jet events.
The difference in energy resolution for real photons and fakes
from misidentified jets results in a difference in the shape of
the Er distribution between the two categories.

The Er shape in SM 7y events is modeled using a dielec-
tron (ee) data sample predominantly composed of Z — ee
events. The ee sample satisfies the same kinematic require-
ments as the yy sample, with the exception that the ee invari-
ant mass is restricted to an interval about the Z boson peak
to reduce genuine K7 contributions (e.g., W + jet, di-boson,
and ¢7 events). The F7 distribution in ee events is compared
with shapes in Z — ee and SM vy MC events generated with
PYTHIA [22]. These MC samples, and all others used in this
Letter, were processed with full GEANT [23]] detector simula-
tion and standard reconstruction algorithms. Kinematic dif-
ferences between the Z — ee and SM 7y processes are verified
with MC to have a negligible impact on the Fr shape. The
Z — ee MC accurately models ee data for Er values below
FEr ~ 35 GeV. Above this value, a more pronounced tail is
observed in ee data. The tail in data reflects both mismeasure-
ments not modeled in MC, and a small residual presence of



genuine £ events in the ee sample. The average of the data
and MC shapes is used to model the Erin SM vy events for
values of 7 > 35 GeV, and the data-only and MC-only ex-
tremes are used to define a systematic uncertainty on the this
shape.

The Er shape in misID-jet events is modeled with a data
sample satisfying the same requirements as the Yy sample with
the exception that at least one of the photon candidates fails
the NN requirement. Additionally, photon identification re-
quirements (iii) and (iv) are loosened to reduce the statistical
uncertainty on the 7 shape. A systematic uncertainty on the
Fr shape in events with misidentified jets is obtained by vary-
ing the photon identification criteria.

The instrumental Erbackground estimate is normalized
such that the number of events with £r < 10 GeV is equal
to that in the yy sample. The relative contribution of SM vy
and misID-jet background events is determined by a fit to the
vy sample Er distribution for £7 < 20 GeV. The fit accounts
for the small contribution of SM background with genuine
Frin the fit region, and is verified to be insensitive to signal
contributions for benchmark model cross sections relevant to
this analysis. The SM vy contribution to the yy sample over
the full £rrange is (41 +17)%. A systematic uncertainty ac-
counts for changes in the shape of the predicted instrumental
Fr distribution arising from the uncertainty in the determina-
tion of the SM 'yy contribution.

SM background with genuine Er arises from real SM yy+
FEr + X events and from events with an electron misidenti-
fied as a photon (misID-ele). The misID-ele contribution is
derived using an e7y data sample, composed primarily of in-
strumental £7 sources for Fr < 20 GeV and W(— ev)y and
W(— ev) + jet events at higher [r values. The instrumental
Er sources are modeled with the previously introduced ee and
misID-jet £7 shapes, respectively. The Z — ee normalization
is determined by fitting the Z boson peak in the e7y invariant
mass distribution, and the multi-jet £7 shape is normalized to
provide the remaining contribution in the £ < 10 GeV re-
gion. The presence of real Er contributions in the ey sample
is seen as an excess of events with high E7 values above the
predicted contributions from instrumental sources. This ex-
cess is well described by Wyand W +jet events. The expected
W boson peak is observed in the transverse mass distribution
of ey sample events with £y > 30 GeV. The normalization
of the W —+ jet contribution is determined from a comparison
of the data photon NN shape with MC real and fake photon
NN shapes [18]] in this £7region. The remaining contribu-
tion is in good agreement with PYTHIA W'y production after
applying a next-to-leading order (NLO) QCD correction [24]
and an additional +15% scaling factor accounting for QED fi-
nal state radiation (FSR) in inclusive W production. The FSR
component [25] is determined with data using the AR (e,Y)
distribution. The predicted misID-ele contribution to the yy
sample equals the excess of high Er events in the ey sample,
scaled by fe_y/(1 — fesy), Where fo_y = 0.02040.005 de-
notes the rate at which an electron fakes a photon satisfying
the selection criteria, as measured with Z — ee data.
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FIG. 1: F7 distribution in the yy sample shown with statistical uncer-
tainty and expected SM background from events with a misidentified
jet, a misidentified electron, W /Z + vy events, and SM yy events. The
expected Fr distribution in the presence of GMSB and UED events
is also displayed for example values of A and R;l, respectively.

Real SM diphoton events with large genuine £7 originate
from W /Z + vy processes. This small background contribu-
tion is estimated with MC using MADGRAPH [26]. Events
with inclusive W and Z boson decay modes are simulated,
with W — Iv (I = e,u,T) and Z — vV providing the largest
genuine £7 contribution. A total of 1.6 +0.1 W + vy events
and 3.8 £0.3 Z+ vy events are estimated to be present in the
vy sample. Figure [1| displays the Yy sample Er distribution,
which is in good agreement with the SM prediction over the
full Frrange. Table [[| provides the observed number of vy
sample events and the SM prediction in three £7 regions.

We determine the sensitivity to the GMSB scenario using
a set of values, termed SPS8 [27], for the model parameters.
In this set the scale A is unconstrained, M,,,.s = 2A, Npes = 1,
tanf3 = 15, and p > 0 [27]. The masses and decay widths
of SUSY particles are calculated with SUSYHIT 1.3 [28]] and
used to generate PYTHIA MC events. The event selection ef-
ficiency is 0.17 £ 0.02 at A = 120 TeV, and does not differ
significantly for other A values studied. The NLO production
cross section is calculated with PROSPINO 2.1 [5]. The ex-
pected Er distribution for the SM and GMSB at A = 120 TeV
is depicted in Figure The number of expected GMSB
events in three F7 regions is listed in Table|[l|for A = 100 and
120 TeV.

We consider the UED model as implemented in PYTHIA
6.421 [29], leaving R;' unconstrained and setting AR, =
20, where A is the cutoff scale for radiative corrections to
KK masses. This UED model is implemented in a higher
(4 +N) dimensional space, where R;! is much larger than



TABLE I: Observed number of yy sample events, predicted background from instrumental E7 sources (SM vy, y+jet, QCD multi-jet) and
genuine E7 sources (W, W +jet, W /Z +vy), and total predicted SM background, in three £7 intervals. The expected number of GMSB and
UED signal events is listed for two A and R;l values, respectively. The total uncertainty on the SM background and expected signal is given.

FrInterval, Observed SM Background Events Expected Signal Events
GeV Events Instr. 7 Genuine Fr Total GMSB GMSB UED UED
A=100TeV A=120TeV R;'=420GeV R;!=460GeV
35-50 18 9.6+1.9 23£05 11.9£2.0 1.8+0.1 0.3+0.1 14401 0.3+0.1
50-175 3 3.5+£0.8 1.5+0.3 5.0£09 4.1+£03 0.8+0.1 29+0.2 0.6+0.1
>75 1 1.1+£04 0.8+0.1 1.9+04 143+£1.1 44+04 24.7+2.0 6.4+0.5

that of the N compact extra dimensions accessible to grav-
ity, inducing KK particle decays through gravitational inter-
actions. We choose N = 6 and a fundamental Planck scale
Mp =5 TeV, such that only the y* — GY decay occurs with
appreciable branching fraction [11]. The event selection ef-
ficiency is 0.19 £0.02 at R;! = 460 GeV, and does not dif-
fer significantly for other R;l values studied. The expected
Er distribution for the SM and UED at R.!' = 460 TeV is
depicted in Figure [ The number of expected UED events
in three Frregions is listed in Table [I| for R, = 420 and
460 GeV.

Systematic uncertainties for sources of instrumental Fr are
attributed to the uncertainty of the Er shape in SM 7y and
misID-jet events, and their relative normalization. An un-
certainty in the shape of the Er distribution for the misID-
ele contribution arises from the uncertainty in the Z — ee
contribution to the ey sample, and a 25% misID-ele normal-
ization uncertainty results from the f, .y uncertainty. Sys-
tematic uncertainties in the contributions estimated with MC
arise from the integrated luminosity (6.1%), trigger efficiency
(2%), and photon identification (3% per photon) and trajecto-
ries (3%) efficiencies. Uncertainty in parton distribution func-
tions (PDF) [30Q] yield systematic uncertainties of up to 5%
and 20% in the production rate of GMSB and UED events,
respectively.

No evidence for BSM physics is observed in the yy sample
Fr distribution and limits on the benchmark models are de-
rived using a Poisson log-likelihood ratio test [31] incorporat-
ing the full £7 distribution. Pseudo-experiments are generated
according to the background-only and signal plus background
hypotheses, and account for statistical uncertainty on the ex-
pected number of events and systematic uncertainties. The
cross section limit is evaluated using the CL; modified fre-
quentist approach [31]]. Figure [2| shows the predicted GMSB
and UED cross section with PDF uncertainty, and 95% C.L.
cross section exclusion limit, as functions of A and R;l, re-
spectively. For GMSB, the NLO cross section uncertainty is
small compared to the PDF uncertainty. The UED NLO cross
section has not yet been computed.

In conclusion, we have presented a search for physics be-
yond the standard model in the yy+ Er + X final state at
the Tevatron. The observed Fr distribution is consistent with
the SM expectation and limits on two benchmark models are
derived. In the SPS8 GMSB model, values of the effective

SUSY breaking scale A < 124 TeV are excluded at 95% C.L.
The limit excludes My < 175 GeV, representing improve-
ments of 50 GeV [17] and 26 GeV [15] with respect to previ-
ous measurements. Additionally, the first assessment is made
of the sensitivity to the UED model with KK particle decays
induced by gravitational interactions, excluding values of the
compactification radius R, ! < 477 GeV at 95% C.L.
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